Fast exact algorithms for some connectivity problems parametrized by clique-width

نویسندگان

  • Benjamin Bergougnoux
  • Mamadou Moustapha Kanté
چکیده

Given a clique-width expression of a graph G of clique-width k, we provide 2O(k) ·nO(1) time algorithms for connectivity constraints on locally checkable properties such as Connected Dominating Set, Connected Perfect Dominating Set or Node-Weighted Steiner Tree. We also propose an 2O(k) ·nO(1) time algorithm for Feedback Vertex Set. The best running times for all the considered cases were either 2O(k·log(k)) · nO(1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clique-width: on the price of generality

Many hard problems can be solved efficiently when the input is restricted to graphs of bounded treewidth. By the celebrated result of Courcelle, every decision problem expressible in monadic second order logic is fixed parameter tractable when parameterized by the treewidth of the input graph. Moreover, for every fixed k ≥ 0, such problems can be solved in linear time on graphs of treewidth at ...

متن کامل

Fast algorithms for vertex subset and vertex partitioning problems on graphs of low boolean-width⋆

We consider the graph parameter boolean-width, related to the number of different unions of neighborhoods across a cut of a graph. Boolean-width is similar to rankwidth, which is related to the number of GF [2]-sums (1+1=0) of neighborhoods instead of the Boolean-sums (1+1=1) used for boolean-width. It compares well to the other four well-known width parameters tree-width, branch-width, clique-...

متن کامل

On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic

We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is deenable in Monadic Second Order Logic. We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition , which establishes the bound on the clique{width, can be computed in polynomia...

متن کامل

Faster algorithms for vertex partitioning problems parameterized by clique-width

Many NP-hard problems, such as Dominating Set, are FPT parameterized by clique-width. For graphs of clique-width k given with a kexpression, Dominating Set can be solved in 4knO(1) time. However, no FPT algorithm is known for computing an optimal k-expression. For a graph of clique-width k, if we rely on known algorithms to compute a (23k − 1)expression via rank-width and then solving Dominatin...

متن کامل

Faster Algorithms Parameterized by Clique-width

Many NP-hard problems, such as Dominating Set, are FPT parameterized by clique-width. For graphs of clique-width k given with a kexpression, Dominating Set can be solved in 4knO(1) time. However, no FPT algorithm is known for computing an optimal k-expression. For a graph of clique-width k, if we rely on known algorithms to compute a (23k − 1)expression via rank-width and then solving Dominatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03584  شماره 

صفحات  -

تاریخ انتشار 2017